If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28k^2+67k=40
We move all terms to the left:
28k^2+67k-(40)=0
a = 28; b = 67; c = -40;
Δ = b2-4ac
Δ = 672-4·28·(-40)
Δ = 8969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(67)-\sqrt{8969}}{2*28}=\frac{-67-\sqrt{8969}}{56} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(67)+\sqrt{8969}}{2*28}=\frac{-67+\sqrt{8969}}{56} $
| 1/6+x=1/2 | | v-8.21=6.16 | | 2c^2-14c-36=0 | | 422=8x+270 | | b^2+14b+24=0 | | 121+x+29=180 | | -15=p=4p | | x11+9=11 | | 13-y=206 | | 2.2=6.7-0.5x | | -9=6w–7w | | -21−38+x=-37 | | T(-4)=6+3x-2 | | -15x−19=-12 | | 56/80=x/100 | | S(2)=12-0.25x | | 98=5u+8 | | 4c-8=7c+77 | | -21x−38=-37 | | 73=1+3x | | 10+(3x/5)+3=4x | | 9x=324 | | 8y−5=y+9 | | P=13+5d/9 | | 6x+15=75+2x | | (8/6)x=3/4 | | 11/10-(5x-2)=1/5x-12 | | S(-4)=12-0.25x | | y+39=-89 | | H(2)=7-2x | | (10+3x)/5+3=4x | | H(0)=7-2x |